

Guide pédagogique

Module ECOMAP 9.3 (5 crédits ECTS)

Place du module et enjeux

Ce module contient tous les outils permettant au futur ingénieur de choisir un matériau en fonction d'un cahier des charges spécifique. Qu'il s'agisse d'outils de modélisation pour substituer un matériau dans une application précise ou de méthodes de caractérisation permettant la prise en compte de son vieillissement et de sa fin de vie, ce module permet à l'ingénieur de cibler le matériau optimal en fonction des contraintes d'utilisation.

Teaching guide and syllabus

Module ECOMAP 9.3 (5 ECTS credits)

Subject matter importance and associated issues

This module contains all the necessary tools for the future engineer to choose a material according to a list of specifications. Modelling tools and material properties assessment in link with its aging and its end of life allow the engineer to target the optimal material according the constraints related to its usage.

Responsable: Anne-Sophie Caro

Téléphone: 0466785631

Courriel: Anne-Sophie.Caro@mines-ales.fr

ENSEIG	NEMENTS ACADEMIQUES	Volume Détail des horaire coefficients		Crédits
Tenue	en service et fin de vie	73 h		
0	Modélisation mécanique des matériaux composites	17	2	
0	TP caractérisation et modélisation des matériaux composites	14	1	5
0	Transferts thermiques et réaction au feu	20	2	
0	Vieillissement et fin de vie des matériaux	22	2	

Titre de la conférence introductive présentant les enjeux et l'ancrage du module dans les problématiques technologiques et sociétales.	Intervenant (nom/ statuts/ expertise)

Matière 1:

Modélisation mécanique des matériaux composites			
Code : ECOMAP 9.3.1 Titre du module : Tenue en service et fin de vie			
Semestre: S9	Cursus de rattachement : Département ECOMAP		

Ī	Heures	Heures	Cours	TD	TP	Projet	Contrôles	Travail	Coef	ECTS
	présentiel	total						personnel	/module	
	16	17	14	2	0		1	4	2	

Titre	Modélisation mécanique des matériaux composites	
Résumé	L'étude de la résistance mécanique d'un matériau mis sur le marché est essentielle au bon dimensionnement	
	d'un produit. Les propriétés associées peuvent être modélisées ou évaluées à travers des approches	
	numériques ou expérimentales. Le cas particulier des matériaux stratifiés est particulièrement traité.	

Responsable	Anne-Sophie CARO – C2MA – IMT Mines Alès	
Equipe enseignante	Anne-Sophie CARO – C2MA – IMT Mines Alès	
	Patrick IENNY – C2MA – IMT Mines Alès	
	Stéphane CORN – C2MA – IMT Mines Alès	
	Romain LEGER – C2MA – IMT Mines Alès	

Mots-clés	Matériaux composites, vibrations des structures
Prérequis	Algèbre linéaire, Elasticité linéaire anisotrope, Matériaux pour l'Ingénieur

Contexte et objectif général :

Les matériaux composites occupent une part importante du marché actuel. Aujourd'hui le contexte environnemental impose un renouveau dans les constituants de ces matériaux. Les dimensionner, les caractériser en service (tenue mécanique) permet de faire le bon choix de matériau en fonction du cahier des charges proposé.

Programme et contenu :

La tenue mécanique des matériaux composites peut être prédite analytiquement ou numériquement de par la nature de ses constituants et de l'affinité qu'ils présentent. Ce cours présente différents modèles adaptés à la typologie du composite (stratifiés, sandwich ...) en vue de la prédiction de ses propriétés mécaniques (élasticité, endommagement, rupture). Les différents modèles proposés sont intégrés dans un fichier Excel. Une ouverture au domaine de la vibration des structures

permet de proposer et d'introduire une méthode de suivi de la rigidité des structures composites en conditions de vieillissement à partir de l'évaluation de leur comportement vibratoire.

Méthode et organisation pédagogique : Cet enseignement se présente sous la forme de cours, TD, TP sur logiciel.

Acquis d'apprentissage visés :

- Comprendre, évaluer et modéliser la relation entre les performances d'une structure et les propriétés des matériaux constituants
- Être en mesure de prédire le comportement mécanique de matériaux composites et leur tenue en service
- Être critique par rapport aux modélisations prédictives

Evaluation: QCM 1 h

Retour sur l'évaluation fait à l'élève :

- Consultation des copies sur demande expresse de l'élève
- Délais de correction des examens : 3 semaines

Support pédagogique et références :

Support Powerpoint, polycopié (Campus)

Matière 2:

TP Caractérisation et modélisation des matériaux composites			
Code : ECOMAP 9.3.2 Titre du module : Tenue en service et fin de vie			
Semestre: S9	Cursus de rattachement : Département ECOMAP		

Heures présentiel	Heures total	Cours	TD	TP	Projet	Contrôles	Travail personnel	Coef /module	ECTS
14	14	0	0	14			6	1	

Titre	TP Caractérisation et modélisation des matériaux composites		
Résumé	L'objectif de ce TP est de mettre en application (numérique et expérimental) les notions vues dans la		
	matière 1.		

Responsable	Anne-Sophie CARO – C2MA – IMT Mines Alès
Equipe enseignante	Anne-Sophie CARO – C2MA – IMT Mines Alès
	Romain LEGER – C2MA – IMT Mines Alès
	Stéphane CORN – C2MA – IMT Mines Alès

Mots-clés	Matériaux composites, stratifiés, vibrations des structures
Prérequis	Modélisation des matériaux composites

Contexte et objectif général :

Mise en place de modèles numériques permettant d'établir des modèles mécaniques prédictifs dans le cas de matériaux composites.

Programme et contenu :

Deux (2) TP sont proposés pour appliquer le cours « Modélisation du comportement mécanique des composites ». Un premier TP (6h) permet d'appliquer les techniques vibratoires sur différents matériaux, dont un matériau stratifié. Un deuxième TP (8h) purement numérique permet d'utiliser un code de calcul par éléments finis pour modéliser le comportement mécanique d'un matériau stratifié. Une comparaison entre modèles (analytique, numérique) et expérience (modules statique et dynamique) est à réaliser et à interpréter.

Méthode et organisation pédagogique : Cet enseignement se présente sous la forme de TP

Acquis d'apprentissage visés :

- Être en mesure de prédire le comportement mécanique de matériaux composites et leur tenue en service
- Être critique par rapport aux modélisations prédictives

Evaluation: Compte rendus

Retour sur l'évaluation fait à l'élève :

• Délais de correction des examens : 3 semaines

Support pédagogique et références : Support Powerpoint, polycopié (Campus)

Matière 3:

Transferts thermiques et réaction au feu			
Code : ECOMAP 9.3.3 Titre du module : Tenue en service et fin de vie			
Semestre: S9	Cursus de rattachement : Département ECOMAP		

Heures	Heures	Cours	TD	TP	Projet	Contrôles	Travail	Coef	ECTS
présentiel	total						personnel	/module	
16	20	12		6		2	4	2	

Titre	Transferts thermiques et réaction au feu
Résumé	La tenue au stress thermique et le comportement au feu sont deux éléments importants de la tenue en service d'un matériau. L'objectif du cours est de présenter les phénomènes mis en jeu et les propriétés associées, les lois régissant ces phénomènes et les stratégies permettant d'améliorer le comportement des matériaux.

Responsable	Rodolphe SONNIER – C2MA – IMT Mines Alès
	Laurent FERRY – C2MA – IMT Mines Alès
Equipe enseignante	Rodolphe SONNIER – C2MA – IMT Mines Alès
	Laurent FERRY – C2MA – IMT Mines Alès

Mots-clés	Transferts thermiques, réaction au feu
Prérequis	Matériaux pour l'Ingénieur

Contexte et objectif général :

Dans de nombreux secteurs applicatifs, les matériaux peuvent être soumis à des conditions sévères de température que ce soit en utilisation normale ou en situation accidentelle. Mal maitrisées ces situations peuvent conduire à la ruine du matériau et causer des pertes matérielles et humaines. L'objectif général du cours est de fournir les bases scientifiques permettant de comprendre les phénomènes mis en jeu, les caractériser et proposer des solutions permettant de développer des matériaux performants répondant au cahier des charges imposé.

Programme et contenu :

La réaction au feu des matériaux et la résistance au feu des structures sont de première importance dans nombre d'applications. Les performances des matériaux peuvent être significativement modifiées en fonction du stress thermique subi. Ce cours vise donc à présenter ① les différents phénomènes impliqués dans les transferts de chaleur, la décomposition thermique et la combustion des matériaux organiques et ② les modèles qui les décrivent dans des scénarios liés à la tenue en service. Les propriétés thermiques contrôlant l'échauffement et la décomposition du matériau sont présentées ainsi que les méthodes expérimentales permettant de les mesurer. Les stratégies visant à améliorer l'ignifugation et à protéger les structures et les nouvelles tendances dans le domaine de la recherche y sont aussi décrites.

Méthode et organisation pédagogique : Cet enseignement se présente sous la forme de cours, TD

Acquis d'apprentissage visés :

Evaluation: contrôle écrit (1h) + QCM (1h)

Retour sur l'évaluation fait à l'élève :

- Consultation des copies sur demande expresse de l'élève
- Délais de correction des examens : 3 semaines

Support pédagogique et références :

Support Powerpoint, polycopié (Campus)

Matière 4:

Vieillissement et fin de vie des matériaux				
Code : ECOMAP 9.3.4 Titre du module : Tenue en service et fin de vie				
Semestre: S9	Cursus de rattachement : Département ECOMAP			

Heures	Heures	Cours	TD	TP	Projet	Contrôles	Travail	Coef	ECTS
présentiel	total						personnel	/module	
20	22	15	5	0	0	2	10	2	

Titre	Vieillissement et fin de vie des matériaux
Résumé	

Responsable	Claire LONGUET – C2MA – IMT Mines Alès
Equipe enseignante	Claire LONGUET – C2MA – IMT Mines Alès
	Laurent CLERC – C2MA – IMT Mines Alès
	Didier PERRIN – C2MA – IMT Mines Alès
	Jean-Charles BENEZET – C2MA – IMT Mines Alès

Mots-clés	Recyclage, Valorisation, Vieillissement, Méthodes de tri, Economie Circulaire
Prérequis	Matériaux pour l'Ingénieur, Polymères, Biocomposites

Contexte et objectif général :

Ce cours s'intéresse aux moyens existants et émergents en termes de tri/identification et de valorisation/recyclage des matériaux plastiques, composites et biocomposites. La valorisation matière et énergétique est aujourd'hui le pilier central de la politique déchets. Au cœur de l'économie circulaire, le recyclage est le principal contributeur à l'économie de matière et à la diminution de la pression sur les matières non renouvelables tout en permettant le développement de matières premières secondaires performantes. Cependant, ce recyclage est possible à la condition qu'en amont l'identification et le tri des matières soient optimaux et tiennent compte de l'état de la matière (type de grade de plastique, bioplastique, compréhension des phénomènes de dégradation des matériaux (vieillissement), mélange de matériaux, procédés de valorisation, etc.). Aussi, le tri, notamment à la source, que ce soit pour les déchets industriels ou ménagers, est un levier essentiel au développement du recyclage et doit être parfaitement maîtrisé. Enfin, le recyclage et la valorisation matière des déchets répondent dès à présent et dans une perspective de long terme, à des enjeux incontournables, aussi bien au niveau international que local, notamment écologiques. Ces derniers participent à l'économie des matières premières naturelles et d'énergie, sécurisent l'approvisionnement de l'industrie en matières premières et diminuent ses impacts environnementaux. Ainsi, quand est-il réellement des avancés / recyclage de certaines matières inscrites au sein de contextes et d'enjeux de gestion des déchets devenus mondiaux.

Dans ce contexte, pour augmenter la part des matières recyclées issue de déchets plastiques/composites historiques, gérer la fin de vie des matières biosourcées/biodégradables dans la conception de produits manufacturés et répondre aux différents objectifs européen et français, il importe de bien connaître les techniques actuelles de tri / 'identification, tout en considérant les modes de vieillissement de ces matières qui peuvent altérer ce tri.

Programme et contenu :

Le cours reprendra ces trois problématiques de *tri/identification/durabilité* pour mieux valoriser en qualité et en quantité les déchets produits afin de développer de nouveaux couples déchet / technologie de tri / technologies de valorisation adaptés aux évolutions des gisements. Il sera scindé en 4 grandes parties :

- Méthodes conventionnelles de tri;
- Fin de vie des Biocomposites ;
- Vieillissement et dégradation des matériaux polymères ;
- Les Matières Premières Secondaires Intérêts et Désillusions de la Valorisation des Matériaux.

Méthode et organisation pédagogique : Cet enseignement se présente sous la forme de cours et TD

Acquis d'apprentissage visés :

Evaluation :

Retour sur l'évaluation fait à l'élève :

- Consultation des copies sur demande expresse de l'élève
- Délais de correction des examens : 3 semaines

Support pédagogique et références : Support Powerpoint, polycopié (Campus)

Méthode et organisation pédagogique (pour apporter des précisions si nécessaire selon les méthodes pédagogiques utilisées):

Modalité d'évaluation

Le niveau d'acquisition des compétences sera évalué selon les exigences suivantes :

N° indicateur	Indicateur
1	Connaitre les savoirs formels et pratiques du socle des
	fondamentaux
2	Exploiter les savoirs théoriques et pratiques
3	Analyser, interpréter, modéliser, émettre des
	hypothèses, et résoudre

Répartition

Matière	Contrôle	Coefficients	Type de notation	Indicateurs évalués	Chapitres
Modélisation du comportement mécanique des composites	QCM	2	Individuelle	2,3	Tous
TP Caractérisation et modélisation des matériaux composites	Compte rendu de TP	1	Par groupe	3	Tous
Transferts thermiques et réaction a feu	Contrôle	1	Individuelle	1,2,3	Tous
Vieillissement et fin de vie des matériaux	Contrôle	2	Individuelle	3	Tous

Engagement de l'étudiant, éthique et professionnalisme

La démarche éthique est définie dans le règlement intérieur de l'établissement. Chaque étudiant s'engage à en prendre connaissance et à la respecter.

Obligation des cours (Selon l'article 5.3 du Règlement Intérieur, l'on peut définir la présence obligatoire ou non à certains exercices pédagogiques) :

Nombre d'heures estimées de travail personnel (à évaluer selon le type de pédagogie utilisée): pour acquérir les compétences demandées, il est nécessaire que l'étudiant consacre minimum 45 min de travail personnel de compréhension et d'approfondissement par séance de cours.

Nombre d'heures estimées de préparation aux travaux dirigés (TD) : 0

Pénalité pour retard (Conformément à l'article 3.3 du Règlement de scolarité, les enseignants peuvent appliquer des pénalités en cas de remise tardive de rapport sans motif valable (la validité du motif est laissée à l'appréciation de l'enseignant).

Tout travail remis en retard sans motif valable peut être pénalisé de 1 point par jour de retard.

Équipe enseignante

Nom	Domaine d'expertise	Courriel/Téléphone
Stéphane Corn	Mécanique des structures	Stephane.Corn@mines-ales.fr / 0466785629
Rodolphe Sonnier	Comportement au feu et	Rodolphe.sonnier@mines-ales.fr / 0466785659
	ignifugation des matériaux	
Laurent Ferry	Feu et thermique	<u>Laurent.Ferry@mines-ales.fr</u> / 0466785024
Patrick lenny	Mécanique des matériaux	Patrick.lenny@mines-ales.fr / 0466785632
Anne-Sophie Caro	Mécanique des matériaux	Anne-Sophie.Caro@mines-ales.fr / 0466785631
Laurent Clerc	Physicochimie des	<u>Laurent.Clerc@mines-ales.fr</u> / 0466785361
	matériaux	
Didier Perrin	Physicochimie des	Didier.Perrin@mines-ales.fr / 0466785369
	matériaux	
Claire Longuet	Vieillissement	Claire.Longuet@mines-ales.fr / 0466785345
Jean-Charles Benezet	Physicochimie des	<u>Jean-Charles.Benezet@mines-ales.fr</u> /
	matériaux	0466785362
Romain Léger	Mécanique des matériaux	Romain.leger@mines-ales.fr / 0466785688

ACADEMI	IC TEACHING	Teaching hours	Coefficients	Credits
Operating	g performance and materials end-of-life	73 h		
o N	Mechanical modelling of composites materials	17	2	
	Practical works on mechanical modelling of composite materials	14	1	5
	Thermal transfer and flame retardancy	20	2	
0 A	Ageing and waste management of materials	22	2	

Title of conference presenting subject matter importance and associated issues.	Speaker (name/ expertise)

Class 1

Class title: Mechanical modelling of composites materials				
Code: ECOMAP 9.3.1 Module title: Operating performances and materials end-of-life				
Semester: S9 Classification: ECOMAP department				

Hours of presence	Total hours	Lectures	Works hop	Labs	Project	Testing	Personal work	Coef /module	ECTS
16	17	14	2	0	0	1	4	2	

Title	Mechanical modelling of composites materials
Summary	Mechanical resistance of a composite material are keys properties to well design a product. Associated properties can be modeled or evaluated through numerical or experimental approaches. Particular case of
	laminated materials is studied.

Head	Anne-Sophie CARO – C2MA – IMT Mines Alès
Teaching team	Anne-Sophie CARO – C2MA – IMT Mines Alès
	Patrick lenny – C2MA – IMT Mines Alès
	Stéphane Corn – C2MA – IMT Mines Alès
	Romain Léger – C2MA – IMT Mines Alès

Keywords	Composites materials, structural vibrations
Prerequisites	Continuum mechanics, linear algebra, Materials

Context and general objective:

Composite materials are an important part of today's market. Today the environmental context imposes new constituents of these materials. Sizing them in service (mechanical strength) is therefore a necessity.

Program and contents:

Usual properties of composites (elasticity, ultimate stress, damage) can be modelled knowing their constituents' properties. This course proposes several models depending on composite geometry (laminate, sandwich) to predict their mechanical properties. Excel tool will be used to integrate proposed modelling. Opening up to the field of structural vibration enables to propose and introduce a method for monitoring the rigidity of composite structures under aging conditions from the evaluation of their modal parameters. To do this, theoretical bases and techniques of numerical modelling and experimental analysis of the vibratory behaviour of structures are introduced.

Method and pedagogic organisation:

This teaching is in the form of a lecture and exercices. Supports are made available to students. The written test (2 hours) will assess the knowledge assimilated by students and their ability to reflect on the subject.

Targeted skills or knowledge:

- Understand, evaluate and model the relationship between the performance of a structure and the properties of its materials
- Be able to predict the mechanical behaviour of composite materials and their performance in service

• To be critical thinking with these predictive modelling

Evaluation: written exam (2h00)

Feedback made to the student:

- Possibility to consult the copy on request of the student.
- Deadlines for giving correction of exams: 3 weeks

Teaching material and references:

- Power point presentation
- Course booklet and exercises to complement the presentation (campus)

Class 2

Class title: Practical works on mechanical modelling of composite materials				
Code: ECOMAP 9.3.2 Module title: Operating performances and materials end-of-life				
Semester: S9 Classification: ECOMAP department				

Hours of	Total	Lectures	Works	Labs	Project	Testing	Personal	Coef	ECTS
presence	hours		hop				work	/module	
14	14	0	0	14			6	1	

Title	Practical works on mechanical modelling of composite materials
Summary	The objective of this course is to apply some of the notions seen in classes 1 (numerics and experiments)

Head	Anne-Sophie CARO – C2MA – IMT Mines Alès				
Teaching team	Anne-Sophie CARO – C2MA – IMT Mines Alès				
	Romain LEGER – C2MA – IMT Mines Alès				
	Stéphane CORN – C2MA – IMT Mines Alès				

Composites materials, structural vibrations			
Prerequisites Mechanical modelling of composites materials			

Context and general objective:

Implementation of numerical models to establish predictive mechanical models in the case of composite materials

Program and contents:

2 Practical works are proposed to apply the class "Mechanical modelling of composites materials".

In the first one vibrational technical (6h) are used on several materials, one of them is a laminated material. In the second one (8h), a finite element software enables the modelling of this laminated material. A comparison between modelling (analytical, numerical) and experiments (static and dynamic moduli) is done and analyzed.

Method and pedagogic organization:

Practical works in groups.

Targeted skills or knowledge:

- To be able to predict the mechanical behaviour of composite materials and their performance in service
- To be critical thinking with these predictive modelling

Evaluation: Practical work reports

Feedback made to the student:

• Deadlines for giving correction: 3 weeks

Teaching material and references:

Handouts documents (campus)

Class 3

Class title: Heat transfer and fire reaction			
Code: ECOMAP 9.3.3 Module title: Operating performances and materials end-of-life			
Semester: S9 Classification: ECOMAP department			

Hours of	Total	Lectures	Works	Labs	Project	Testing	Personal	Coef	ECTS
presence	hours		hop				work	/module	
16	20	12	0	6	0	2	4	2	

Title	Heat transfer and fire reaction
Summary	Thermal strength and fire behaviour are two important components of material operating performances.
	The objective of the course is to present physical and chemical phenomena governing the material
	behaviour, the related properties, the laws describing these phenomena and finally strategies enabling to
	improve the material behaviour.

Head	Rodolphe SONNIER – C2MA – IMT Mines Alès Laurent FERRY – C2MA – IMT Mines Alès
Teaching team	Rodolphe SONNIER – C2MA – IMT Mines Alès
	Laurent FERRY – C2MA – IMT Mines Alès

Keywords	Heat transfer, fire reaction					
Prerequisites						

Context and general objective:

In numerous applications, materials can be submitted to severe thermal conditions, either in normal operating or in accidental situations. When unsatisfactorily controlled, these situations may lead to the material destruction and cause human losses. The objective of this course is to supply the scientific bases enabling to understand the involved mechanisms, to characterize these phenomena and propose solutions for developing high performance materials compliant with imposed specifications.

Program and contents:

The flame retardancy of materials and the resistance to fire of structures are of main importance for many applications. Performance of materials may be significantly affected by the thermal stress to which they are exposed. This course aims at presenting ① the different phenomena involved in thermal transfer, thermal decomposition and combustion of organic materials and ② modelling used to describe them in scenarios related to their service life. Thermal properties controlling material heating and decomposition as well as experimental methods used for their measurement are described. The strategies to improve the flame retardancy and to protect the structures with a focus on new tendencies in research are also presented.

Method and pedagogic organization:

This teaching is in the form of a lecture and exercises. Supports are made available to students.

Targeted skills or knowledge:

Evaluation: written exam (1h) + MCQ (1h)

Feedback made to the student:

- Possibility to consult the copy on request of the student.
- Deadlines for giving correction of exams: 3 weeks

Teaching material and references:

- Power point presentation
- Course booklet and exercises to complement the presentation (campus)

Class 4

Class title: Ageing and waste management of materials			
Code: ECOMAP 9.3.4 Module title: Operating performances and materials end-of-life			
Semester: S9 Classification: ECOMAP department			

Hours of	Total	Lectures	Works	Labs	Project	Testing	Personal	Coef	ECTS
presence	hours		hop				work	/module	
20	22	15	5	0	0	2	10	2	

Title	Ageing and waste management of materials
Summary	The current environmental context also requires specular attention of the end of life of composites materials,
	this must be though since their conception, considering for example their re-valuation taking into account
	their aging or their compostability.

Head	Claire LONGUET – C2MA – IMT Mines Alès
Teaching team	Claire LONGUET – C2MA – IMT Mines Alès
	Laurent CLERC – C2MA – IMT Mines Alès
	Didier PERRIN – C2MA – IMT Mines Alès
	Jean-Charles BENEZET – C2MA – IMT Mines Alès

Keywords Recycling, Recovery, Ageing, Sorting Methods, Circular Economy	
Prerequisites Materials for Engineer, Polymers, Biocomposites	

Context and general objective:

This course focuses on existing and emerging means of sorting/identification and recovery/recycling of plastics, composites and biocomposites. Material and energy recovery is now the central pillar of the waste policy. At the heart of the circular economy, recycling is the main contributor to saving materials and reducing the pressure on non-renewable materials while allowing the development of high-performance secondary raw materials. However, this recycling is possible provided that upstream the identification and sorting of materials is optimal and takes into account the state of the material (type of plastic grade, bioplastics, understanding of the phenomena of degradation of materials (ageing), mixing of materials, recovery processes, etc.). Also, sorting, particularly at source, whether industrial or household waste, is an essential lever for the development of recycling and must be perfectly controlled. Finally, the recycling and material recovery of waste respond today and in a long-term perspective, to unavoidable issues, both at international and local level, in particular ecological ones. These contribute to the saving of natural raw materials and energy, secure the supply of raw materials to industry and reduce its environmental impact. So, when is there really progress/recycling of certain materials inscribed in contexts and issues of waste management that have become global.

In this context, to increase the share of recycled materials from historical plastic/composite waste, manage the end of life of biosourced/biodegradable materials in the design of manufactured products and meet the various European and French objectives, it is important to know the current sorting/identification techniques, while considering the ageing modes of these materials which can alter this sorting.

Program and contents:

The course will address these three issues of sorting/identification/sustainability to better recover the quality and quantity of the waste produced in order to develop new pairs of waste/sorting technology/recovery technologies adapted to changes in deposits. It will be divided into 4 main parts:

- 1. Conventional sorting methods;
- 2. End of life of Biocomposites;
- 3. Aging and degradation of polymeric materials;
- 4. Secondary raw materials Interests and disillusions in the valorisation of materials.

Method and pedagogic organisation:

This teaching is in the form of a lecture and exercises. Supports are made available to students.

Targeted skills or knowledge:

Evaluation: written exam (2h00)

Feedback made to the student:

- Possibility to consult the copy on request of the student.
- Deadlines for giving correction of exams: 3 weeks

Teaching material and references:

- Power point presentation
- Course booklet and exercises to complement the presentation (campus)

Method and teaching organisation (to be used for providing more detail concerning the teaching methods used):

Testing procedures

The student's level of knowledge acquisition will be evaluated according to the following points:

N° Indicator	Indicator
1	To know the formal and practical knowledge
	constituting the foundation of a given field
2	Exploit theoretical and practical knowledge
3	Analyse, interpret, model, hypothesize and solve
	problems

Grading scheme:

Class	Exam	Coefficients	Administration mode	Evaluated Indicators	Chapters
Mechanical modelling of composites materials	Multiple choice quiz	2	Individual	2,3	All
Practical works on mechanical modelling of composite materials	Reports on pratical works	1	Team	3	All
Thermal transfers and fire resistance	Exam	1	Individual	1,2,3	All
Ageing and end- of-life materials	Exam	2	Individual	3	All

Student commitments, ethics and professionalism

Expectations concerning ethics are defined in the establishment's code of conduct. Each student is expected to know and respect the code of conduct.

Obligatory presence in classes (According to article 5.3 of the Code of conduct, physical presence at certain teaching exercises can be deemed obligatory:

Estimated hours of personal study (evaluate in function of the type of teaching method used): in order to acquire the required learning level, the student is expected (must) to spend a minimum of 45min of personal study time per hour spent in class.

Estimated hours of preparation required for labs/Work Shop: 0

Late penalties (According to article 3.3 of the Teaching Code, teachers can administer penalties for reports/homework that are late without a valid justification (validity is left to the teacher's best judgement).

All late work is subject to penalties as follows 1 point by day (to be completed by the teacher(s)).

Teaching team

(Title) Name	Field of expertise	Email/phone
Stéphane Corn	Structural mechanics	Stephane.Corn@mines-ales.fr / 0466785629
Rodolphe Sonnier	Fire behavior and flame retardancy of materials	Rodolphe.sonnier@mines-ales.fr / 0466785659
Laurent Ferry	Fire behavior and flame retardancy of materials	Laurent.Ferry@mines-ales.fr / 046678
Patrick lenny	Material mechanics	Patrick.lenny@mines-ales.fr / 0466785632
Anne-Sophie Caro	Material mechanics	Anne-Sophie.Caro@mines-ales.fr / 0466785631
Laurent Clerc	Physicochemistry of materials	<u>Laurent.Clerc@mines-ales.fr</u> / 0466785361
Didier Perrin	Physicochemistry of materials	Didier.Perrin@mines-ales.fr / 0466785369
Claire Longuet	Ageing	Claire.Longuet@mines-ales.fr / 04.66.78.53.45
Jean-Charles Benezet	Physicochemistry of materials	<u>Jean-Charles.Benezet@mines-ales.fr</u> / 0466785362
Romain Léger	Material mechanics	Romain.leger@mines-ales.fr / 0466785688

Approbation

Ce guide pédagogique entre en vigueur à compter du 01/01/2020 Il est porté à la connaissance des élèves par une publication sur Campus

Rédaction	Vérification	Validation
L'enseignant responsable du	Le responsable d'UE / de	Le directeur de l'école,
module :	département :	Pour le directeur et par
Anne-Sophie Caro	Anne Sophie Caro	délégation,
ARW	ARW	Le directeur de la DFA / de la DE :