

Guide pédagogique

Module «Production et utilisation de l'énergie» I2E_9.6 --(5 crédits ECTS)

Place du module et enjeux

La consommation d'énergie ne cesse d'augmenter dans le monde. Dans le contexte de changement climatique et de gestion des ressources, il est important de réduire la part des énergies fossiles au profit des énergies renouvelables. L'objectif de la France pour 2020 est d'atteindre d'énergies renouvelables dans son mix énergétique. Ce module présente les différents moyens de production d'énergie, plus particulièrement les énergies renouvelables : énergie éolienne, photovoltaïque, hydraulique, géothermie et biomasse. Les avantages et les contraintes des EnR sont développés. Une étude de cas intégrant la composante économique est proposée aux étudiants.

Teaching guide and syllabus

Module «Energy production and use» -- I2E _ 9.6- (5 ECTS credits)

Subject matter importance and associated issues

Energy consumption is growing more and more in the world. In the frame of climate change and resources management, it is crucial to reduce the part of fossil energies in favour of renewable energies. The French objective until 2020 is to achieve 23% of renewable energies within its energy mix.

This module presents the different means of energy production, especially renewable energies: wind, solar photovoltaic, hydraulic energies, geothermal energy, bioenergy (biomass). Advantage and constraints of these energies are developed. A case study involving the economic part is proposed to the student.

Sandrine Bayle
04 66 78 27 08
Sandrine.Bayle@mines-ales.fr

ENSEIGNEMENTS ACADEMIQUES	Volume	Détail des	Crédits
ENSEIGNEMENTS ACADEMIQUES	horaire	coefficients	Ciedits
Production et utilisation de l'énergie	61h		
 Conférence introductive 	2		
 ENR : Energie éolienne, 	7	1	
 ENR : Photovoltaïque 	8	1	5
 Energie hydraulique, énergies marines 	12	1	J
 Bioénergie 	8	1	
 Energie nucléaire 	12	1	
 Etude de cas – Mise en situation Analyse financière 	12	1	

Titre de la Conférence introductive présentant les enjeux et l'encrage du module dans les problématiques technologiques et sociétales.	

Titre de la matière :	
Code : I2E_9.6	Titre du module : Production et utilisation de l'énergie
Semestre: S9	Cursus de rattachement : Département I2ER Option I2E

Heures	Heures	Cours	TD	TP	Projet	Contrôles	Travail	Coef	ECTS
présentiel	total						personnel	/module	
61	80	34	23			4	19		5

Titre	Production et utilisation de l'énergie
résumé	Sans objet

Responsable	Sandrine Bayle (IMT Mines Alès)
Equipe enseignante	Simon Cossus, Guillaume Marcenac, (Enercoop), Gabrielle Ramirez, Benoit
	Rouvière (Idesun), Guillaume Artigue (IMT Mines Ales), Eric Buchet (ENCIA)

Mots-clés	Energies renouvelables, dimensionnement, développement de projet, analyse financière
Préreguis	

Contexte et objectif général :

Le contexte énergétique mondial est tel qu'un ingénieur ne peut plus de nos jours ne pas avoir dans ses bagages une solide connaissance des différentes sources d'énergie, de leurs utilisations, avantages, inconvénients et conséquences. L'objectif de ces cours est d'offrir à l'étudiant une vision globale de l'énergie dans le contexte actuel de transition énergétique avec un focus approfondi sur les énergies renouvelables.

Programme et contenu :

Production d'énergie (49h)

Energie photovoltaïque : définition, état des lieux, évolutions technologiques, économiques et réglementaires de l'obligation d'achat à l'autoconsommation. Comment dimensionner, caractériser un projet PV.

Energie éolienne : définition, technologies de production éolienne, constituants d'un parc éolien, contexte réglementaire et administratif, enjeux environnementaux, enjeux économiques, vie d'un projet éolien, perspectives d'évolution

Géothermie, Bioénergie : géothermie, biogaz, agro-carburants

Energie hydraulique : hydroélectricité (barrages, centrales), turbines hydroélectriques

Energies marines: introduction, fabrication-industrialisation des hydroliennes, verrous technologiques, installation

Energies fossile et fissile : charbon, gaz, pétrole, uranium

Analyse financière (12h)

Analyse économique, plan comptable, plan de financement, indicateurs de rentabilité

Modélisation sur tableur

Méthode et organisation pédagogique :

Cours, TD, projet

Compétences visées

Connaissances précises des EnR et de leurs enjeux et situer ces différentes énergies dans le paysage énergétique français actuel et futur,

Pré-dimensionnement d'une installation photovoltaïque, éolienne, hydraulique

Être capable d'évaluer la pertinence technico-économique d'un système énergétique

Capacité à rédiger une note sur des problématiques de choix d'énergie

Avoir une approche globale du dévelopement des ENR sur un territoire. Comprendre l'influence des différents acteurs.

Evaluation:

Contrôle écrit, rapport écrit

Retour sur l'évaluation fait à l'élève :

Consultation rapport corrigé, copie d'examen sur demande

Support pédagogique et références :

Supports de cours (pdf)

Méthode et organisation pédagogique

Cf ci dessus

Modalité d'évaluation

Le niveau d'acquisition des compétences sera évalué selon les exigences suivantes :

N° indicateur	Indicateur
1	Connaitre les savoirs formels et pratiques du socle des
	fondamentaux
2	Exploiter les savoirs théoriques et pratiques
3	Analyser, interpréter, modéliser, émettre des
	hypothèses, et résoudre

ENSEIGNEMENTS ACADEMIQUES	Volume	Niveau
	horaire	d'acquisition
Production et utilisation de l'énergie	61h	
o ENR : Energie éolienne,	7	2
ENR : Photovoltzaïque	8	2
 Energie hydraulique, energies marines 	12	2
o Bioénergie	8	1
o Energie nucléaire	12	2
 Etude de cas – Mise en situation Analyse financière 	12	3

Engagement de l'étudiant, éthique et professionnalisme

La démarche éthique est définie dans le règlement intérieur de l'établissement. Chaque étudiant s'engage à en prendre connaissance et à la respecter.

Obligation des cours:

La présence en cours est obligatoire. Les évaluations font appel à du contrôle continu comprenant des évaluations surprises et/ou à des évaluations programmées dans l'emploi du temps. Une partie de l'évaluation du module peut reposer sur une appréciation du comportement professionnel attendu.

Nombre d'heures estimées de travail personnel : cf ci dessus

Nombre d'heures estimées de préparation aux travaux dirigés (TD) :

Pénalité pour retard (Conformément à l'article 3.3 du Règlement de scolarité, les enseignants peuvent appliquer des pénalités en cas de remise tardive de rapport sans motif valable (la validité du motif est laissée à l'appréciation de l'enseignant).

Tout travail remis en retard sans motif valable peut être pénalisé selon les modalités définies par l'enseignant au démarrage du cours.

Équipe enseignante

Simon Cossus, Guillaume Marcenac, (Enercoop), Gabrielle Ramirez, Benoit Rouvière (Idesun), Guillaume Artigue (IMT Mines Ales), Eric Buchet (ENCIA)

ACADEMIC TEACHING	Teaching hours	Coefficients	Credits
Energy production and use	61h	1	
 Wind energy, 	7	1	
 Solar photovoltaïc energy 	8		
 Hydraulic, marine energies 	12	'1	5
 Bioenergy 	8		
 Nuclear energy 	12		
 Financial analyis 	12	1	

Title of Conference presenting subject matter importance and associated issues.	Speaker (name/ expertise)

Class title	
Code : I2E 9_6	Module title: Energy production and use
Semester: S9	Classification : Department I2ER, Option I2E

Hours of	Total	Lectures	Work	Labs	Project	Testing	Personal	Coef	ECTS
presence	hours		shop				work	/module	
62	82	34	23			4	19		5
Title	Energy	Energy production and use							
Summary		•	•	•		•		•	

Head	Miguel Lopez-Ferber (IMT Mines Alès)
Teaching team Simon Cossus, Guillaume Marcenac, (Enercoop), Gabrielle Ramirez, Be	
	Rouvière (Idesun), Guillaume Artigue (IMT Mines Ales), Eric Buchet (ENCIA)

Key words	Renewable energy, project development, dimensioning, financial analysis
Prerequisites	

Context and general objective:

The worlidwide energy context is such that nowadays an engineer must have a thorough knowledge of the different sources of energy, of their uses, their advantages and their drawbacks and therelated conséquences. The objective of this course is to give students an holisitic vision of energy in the current ciontextx of the energy turnaround ,with a detailed focus on renewable sources of energy.

Programme and contents:

Energy production (49h)

Photovoltaic energy: deinition, current situation, technological, economical and regulatory developments from purchase obligation to self-consumption. How to dimension, characterize a PV project

Wind energy: definition, technologies of wind energy generation, constitutive elements of a wind farm, regulatory and administrative context, environmental issues, economical issues, life of a wind farm, development prospects Geothermal energy, bioenergy; geothermal energy, biogas, agrofuel

Water energy: hydroelectric power (dams, power plants) hydroelectric turbines

Ocean energy: introduction, fabrication- industrialisation of Energies marines: introduction, fabrication-industrialization of wind hydro facilities, technological limitations, installation

Fossil energy, nuclear energy: coal, gas, petroleum, uranium

Financial analysis (12h)

Economical analysis, chart of accounts, financing plan, profitability indicators

Spreadsheet based modelling

Case study and live actions simulation (16h)

Division of roles

Calculation and simulation in order to get 100% energy production by EnR for a territory according to envionmental, economic and politic considerations

Discussion on decision making regarding EnR development and influence of each stakeholder

Reflexion on current situation, evaluation criteria for a project

Sites visits (16h)

Photovoltaic, hydraulic, nuclear sites

Method and pedagogic organisation:

Courses, tutorial classes

Module

Targeted skills or knowledge :

Detailed knowledge of EnR and of the related issues, to place these different energies in the current and future french energetic landscape,

Pre-dimensioning of a photovoltaic, wind, hydraulic facility

To be able to evaluate the technico-economical relevance of an energy system.

Ability to draft a note on the issues linked to the choice of energy

To adopt a holisitic approach of the development of renewable sources of energy in a territory

Go understand the influence of the different stakeholders

Evaluation:

Written examinations, report

Feedback made to the student : making corrections available, consulting copies of exams etc ...:

Consulting copies of exams, corrected report, on request

Teaching material and references:

Teaching aids (pdf)

La tables est mits.

Method and teaching organisation (to be used for providing more detail concerning the teaching methods used):

Testing procedures

The student's level of knowledge acquisition will be evaluated according to the following points:

N° Indicator	Indicator	
1	To know the formal and practical knowledge	
	constituting the foundation of a given field	
2	Exploit theoretical and practical knowledge	
3	Analyse, interpret, model, hypothesize and solve	
	problems	

Grading scheme:

ACADEMIC TEACHING	Teaching hours	Indicator
Energy production	61h	
 Wind energy 	7	2
 Solar photovoltaïc energy 	8	2
 Hydraulic, marine energies 	9	1
 Bioenergy 	14	1
 Nuclear energy 	12	2
 Financial analyis 	12	3

Student commitments, ethics and professionalism

Expectations concerning ethics are defined in the establishment's code of conduct. Each student is expected to know and respect the code of conduct.

Obligatory presence in classes (According to article 5.3 of the Code of conduct, physical presence at certain teaching exercises can be deemed obligatory:

Obligatory presence in classes is required. Evaluations require announced and unannounced controls. Part of the evaluation can rely on the judgement of expected professionnal behaviour

Estimated hours of personal study (evaluate in function of the type of teaching method used): in order to acquire the required learning level, the student is expected (must) to spend a minimum of 45min of personal study time per hour spent in class.

Estimated hours of preparation required for labs/Work Shop:

Module

Late penalties (According to article 3.3 of the Teaching Code, teachers can administer penalties for reports/homework that are late without a valid justification (validity is left to the teacher's best judgement).

All late work is subject to penalties according to the teacher judgement. The procedure has to be clarified at the beginning of the course.

Teaching team (list the names of the teachers and what they teach, with contact information (phone and email)

Simon Cossus, Guillaume Marcenac, (Enercoop), Gabrielle Ramirez, Benoit Rouvière (Idesun), Guillaume Artigue (IMT Mines Ales), Eric Buchet (ENCIA)

Approbation

Ce guide pédagogique entre en vigueur à compter du....

Il est porté à la connaissance des élèves par une publication sur

Rédaction	Vérification	Validation
L'enseignant responsable du module :	Le responsable d'UE / de département :	Le directeur de l'école, Pour le directeur et par
module.	departement.	délégation,
Bugle		Le directeur de la DFA / de la DE :