Guide pédagogique

«Electronique numérique » Module PRISM-SYM-9.4 (3 crédits ECTS)

Place du module et enjeux

Les systèmes mécatroniques traitent numériquement l'information issues des capteurs et des messages reçus pour décider des actions à mener.

Teaching guide and syllabus

"Digital electronics"
PRISM-SYM-9.4 (3 ECTS credits)

Subject matter importance and associated issues

Mechatronic systems compute information received from sensors and messages to decide what actions to take.

Responsable : Nicolas DACLIN Téléphone : 04 34 24 62 66

Courriel: nicolas.daclin@mines-ales.fr

ENSEIGNEMENTS ACADEMIQUES	Volume horaire	Détail des coefficients	Crédits
Méthodes de modélisation	40 h		
 Langages de développement Architecture des microcontrôleurs 	12 28	1 2	3

Matière 1 :

Langages de développement				
Code: PRISM-SYM 9.4.1	Titre du module : Electronique numérique			
Semestre: S9	Cursus de rattachement : Département PRISM, Option SyM			

Heures	Heures	Cours	TD	TP	Projet	Contrôles	Travail	Coef	ECTS
présentiel	total						personnel	/module	
12	15	6	0	5	0	1	3	1	/

Titre	Langages de développement
résumé	

Responsable	Christophe Millet			
Equipe enseignante	Christophe Millet (IMT Mines Ales)			

Mots-clés	Langage objet, Eclipse, Java
Prérequis	Base de la programmation orientée objet

Contexte et objectif général :

Au-dessus des couches logicielles de gestion du matériel, les applications de communication, de traitement de données et d'interface sont programmées en langage structuré de type objet comme Java. Ce cours conforte et enrichit les notions acquises dans ce domaine par les élèves en première année.

Programme et contenu :

- 1) Classe objet, type de données, structures de contrôle, EDI
- 2) Bibliothèque de classes, encapsulation, héritage, polumorphisme, surcharge
- 3) Interfaces, classes abstraites, exceptions, gestion E/S
- 4) Interface graphique, contrôleurs d'évènements, classes de communication

Méthode et organisation pédagogique :

Cours suivi de TP

Acquis d'apprentissage visés :

- Etre capable de comprendre, analyser, modifier un programme Java
- Etre capable de développer une application (interface homme machine par exemple)

Evaluation:

Examen

Retour sur l'évaluation fait à l'élève :

TPs encadrés

Support pédagogique et références :

Diaporama, sujets et corrections des TPs

Matière 2 :

Architecture des microcontrôleurs				
Code: PRISM-SYM 9.4.2	Titre du module : Electronique numérique			
Semestre: S9	Cursus de rattachement : Département PRISM, Option SyM			

Heures présentiel	Heures total	Cours	TD	TP	Projet	Contrôles	Travail personnel	Coef /module	ECTS
28	34	10	0	0	18	0	6	2	/

Titre	Architecture des microcontrôleurs

Résur	né	Les microcontrôleurs sont des unités de calcul des petits systèmes embarqués. Leurs				
		fonctionnalités croissantes pour un encombrement et un prix très faibles en font des éléments de				
		calculs très répandus.				

Responsable	Alexandre Meimouni
Equipe enseignante	Alexandre Meimouni, Sébastien Moulin

Mots-clés	Electronique, microcontrôleur, langage C, outils de développement (compilateur,
	debugger)
Prérequis	Bases de la programmation structurée.

Contexte et objectif général :

Les microcontrôleurs sont des circuits intégrés numériques (à haut degré d'intégration) constitués d'une unité centrale de traitement (CPU), de mémoires et de périphériques d'entrées/sorties... Ils sont destinés aux applications embarquées qui ont de fortes contraintes d'encombrement et de consommation. On les retrouve dans de nombreux domaines : domotique, appareils domestiques, robotique, transport, santé, jouets et sont au cœur des objets connectés...

L'objectif de ce cours est de découvrir ce type de circuit (qui sont aux cœurs des systèmes embarqués), d'en connaitre les architectures, les mécanismes, les fonctionnalités. A travers différents TP (mise en œuvre d'un robot mobile embarquant une carte CPU 8bits et plusieurs capteurs et actionneurs), apprendre à les mettre en œuvre.

Programme et contenu :

Présentation générale des Microcontrôleurs.

Présentation et mise en œuvre du microcontrôleur Microchip PIC18F46K22.

Méthode et organisation pédagogique :

Alternances cours /TP: les élèves travaillent par groupe de 2 élèves durant les TP.

Acquis d'apprentissage visés :

Choisir et mettre en œuvre une carte à microcontrôleur.

Développer un applicatif dédié (utilisation d'outils de développement et de débogage).

Analyser son comportement opérationnel.

Evaluation:

Compte rendu et codes sources sur les différents TP

Retour sur l'évaluation fait à l'élève :

Sur demande de l'élève, fiche d'évaluation du rapport et du code.

Support pédagogique et références :

Cours_µC.pdf

Méthode et organisation pédagogique

Cf. détail par matières ci-dessus.

Modalité d'évaluation

Le niveau d'acquisition des compétences sera évalué selon les exigences suivantes :

N° indicateur	Indicateur
1	connaitre les savoirs formels et pratiques du socle des
	fondamentaux
2	Exploiter les savoirs théoriques et pratiques
3	Analyser, interpréter, modéliser, émettre des
	hypothèses, et résoudre

Répartition

Matière	Contrôle	Coefficients	Type de	Indicateurs	Chapitres
			notation	évalués	

Langages de développement	DS	1	Individuel	3	Tous
Architecture de microcontrôleur	Rapport de projet	2	En groupe	З	Tous

Engagement de l'étudiant, éthique et professionnalisme

La démarche éthique est définie dans le règlement intérieur de l'établissement. Chaque étudiant s'engage à en prendre connaissance et à la respecter.

Nombre d'heures estimées de travail personnel: pour acquérir les compétences demandées, il est nécessaire que l'étudiant consacre minimum 45 min de travail personnel de compréhension et d'approfondissement par séance de cours.

Nombre d'heures estimées de préparation aux travaux dirigés (TD) :

Pour chaque enseignement un temps de travail personnel est conseillé. Ce volume est indiqué dans la colonne « Travail personnel » de chaque matière

Pénalité pour retard (Conformément à l'article 3.3 du Règlement de scolarité, les enseignants peuvent appliquer des pénalités en cas de remise tardive de rapport sans motif valable (la validité du motif est laissée à l'appréciation de l'enseignant).

Tout travail remis en retard sans motif valable peut être pénalisé de 1 point par jour de retard, ou se voir attribuer la note de zéro.

Équipe enseignante

Nom	Domaine d'expertise	Téléphone	Courriel
Christophe Millet	Informatique	04 66 78 20 13	Christophe.Millet@mines-ales.fr
Alexandre Meimouni Electronique		06 50 26 56 19	Alexandre.Meimouni@mines-ales.fr
Sébastien Moulin Electronique		04 66 78 51 02	Sébastien.Moulin@mines-ales.fr

ACADEMIC TEACHING	Teaching hours	Coefficients	Credits
Digital electronics ○ Development languages ○ Microcontroller architecture	40 h 12 28	1 2	3

Class 1

Development languages	
Code: PRISM-SYM 9.4.1	Module title : Digital electronics
Semester: S9	Classification: PRISM department, SYM option

ı	Hours of	Total	Lectures	Workshop	Labs	Project	Testing	Personal	Coef	ECTS
	presence	hours						work	/module	
	12	15	6	0	5	0	1	3	1	/

Title Development languages	
Summary	

Head	Christophe Millet
Teaching team	Christophe Millet

Key words Object language, Eclipse, Java				
Prerequisites	Object-Oriented concepts, Programming Basics			

Context and general objective:

Above the hardware management software layers, communication, data processing and interface applications are programmed in object-oriented structured language such as Java. This course reinforces and enriches the concepts acquired in this field by first year students.

Programme and contents:

- 1) Object class, data type, control structures, EDI
- 2) Class library, encapsulation, inheritance, polumorphism, overload
- 3) Interfaces, abstract classes, exceptions, I/O management
- 4) Graphical interface, event controllers, communication classes

Method and pedagogic organisation:

Course followed by Labs

Targeted skills or knowledge:

- Being able to understand, analyze, modify a Java program
- Being able to develop an application (human machine interface for example)

Evaluation:

Exam

Feedback made to the student:

Exchanges during the labs

Teaching material and references:

Slideshow, corrections of the labs

Class 2

Microcontroller architecture	
Code: PRISM-SYM 9.4.2	Module title: Sensors and actuators
Semester: S9	Classification: PRISM department, SYM option

ours of esence	Total hours	Lectures	Workshop	Labs	Project	Testing	Personal work	Coef /module	ECTS
28	34	10	0	0	18	0	6	2	/

Title	Microcontroller architecture		
Summary	Microcontrollers are calculations units for small embedded systems. Their increasing functionality		
	for a very small footprint and their very low price make them very popular computational elements.		

Head	Alexandre Meimouni	
Teaching team	Alexandre Meimouni, Sébastien Moulin (PFM)	

Key words	Electronic microcontroller, C language, developpement tools (Compiler, debugger)
Prerequisites	Basics of structured programming

Context and general objective:

Microcontrollers are digital integrated circuits (with an high degree of integration) which embeds one or more central computing unit (CPU), memories and input/output devices ... They are intended for embedded applications with high space and energy constraints. We find them in a lot of domains: home automation, home appliances, robotics, transport, health, toys and are the heart of connected objects ...

The goal of this course is to discover this type of component (which are at the heart of embedded systems), to know their architectures, mechanisms, features. Through various labs (implementation of a mobile robot embedding a 8bits CPU board and multiple sensors and actuators), learn how to implement them.

Programme and contents:

General presentation of Microcontrollers.

Presentation and implementation of the Microchip PIC18F46K22 microcontroller.

Method and pedagogic organisation:

Lectures/ TP alternatively: students work in groups of 2 during the labs.

Targeted skills or knowledge:

To choose and implement a microcontroller board.

To develop a dedicated application (use of development and debugging tools).

To analyze its operational behavior.

Evaluation: report and source codes labs

Feedback made to the student: On students demand, report and code evaluation sheet.

Teaching material and references:

Cours_µC.pdf

Method and teaching organisation

See details by subject above.

Testing procedures

The student's level of knowledge acquisition will be evaluated according to the following points:

N° Indicator	Indicator
1	To know the formal and practical knowledge
	constituting the foundation of a given field
2	Exploit theoretical and practical knowledge
3	Analyse, interpret, model, hypothesize and solve problems

Grading scheme:

Class	Exam	Coefficients	Administration	Evaluated	Chapters
			mode	Indicators	

Development languages	Exam	1	Individual	3	All
Microcontroller architecture	Labs reports	2	In group	3	All

Student commitments, ethics and professionalism

Expectations concerning ethics are defined in the establishment's code of conduct. Each student is expected to know and respect the code of conduct.

Estimated hours of personal study: in order to acquire the required learning level, the student is expected (must) to spend a minimum of 45min of personal study time per hour spent in class.

Estimated hours of preparation required for labs/Work Shop:

For each class a personal working time is recommended. This volume is indicated in the "Personal work" column of each subject

Late penalties (According to article 3.3 of the Teaching Code, teachers can administer penalties for reports/homework that are late without a valid justification (validity is left to the teacher's best judgement).

Any work submitted late without valid reason may be penalized by 1 point per day of delay, or given a score of zero.

Teaching team

Name	Expertise Field	Phone	Email
Christophe Millet	Informatique	04 66 78 20 13	Christophe.Millet@mines-ales.fr
Alexandre Meimouni	Electronique	04 66 78 56 19	Alexandre.Meimouni@mines-ales.fr
Sébastien Moulin	Elctronqiue	04 66 78 51 02	Sébastien.Moulin@mines-ales.fr

Approbation

Ce guide pédagogique entre en vigueur à compter du....

Il est porté à la connaissance des élèves par une publication sur

Rédaction	Vérification	Validation
L'enseignant responsable du	Le responsable d'UE / de	Le directeur de l'école,
module :	département :	Pour le directeur et par délégation,
		Le directeur de la DFA / de la
		DE: