Pourquoi cette UE?

La première partie de ce module a pour objectif de conditionner et optimiser la conception d'un système pour maximiser le ratio disponibilité opérationnelle et coût global de possession. Cette approche inclue l'explication des enjeux en phase d'exploitation et de maintenance du système et l'introduction des postes typiques d'étude pour optimiser les futures opérations de maintenance. Ce module contient un deuxième cours qui permet de transmettre les grands principes de l'ingénierie système et définir les besoins en organisation, outils et méthode pour supporter le déploiement.

Eléments constitutifs de l'UE

		coefficient
PRISMgitm_9_1-1 Soutien Logistique Intégré		1
PRISMgitm_9_1-2 Déploiement de l'Ingénierie Systè	me en Entreprise	1
Volume d'heures d'enseignement encadré	Volume d'heures de travail personnel	Nombre d'ECTS
30	0	2

Alignement curriculaire

Parmi les compétences visées par la formation, lesquelles sont développées dans cette UE ?

L'UE ne contribue pas à ce bloc de compétences

L'UE contribue à ce bloc de compétences

Compétence non adressée dans

Compétence mise en œuvre dans cette UE

Compétence enseignée dans cette UE

Compétence évaluée dans cette

Compétence enseignée et évaluée dans cette UE

PRISMgitm_9_1 Ingénierie Système : Modélisation et déploiement	FIG
PRISMgitm_9_1-1 Soutien Logistique Intégré	S9

Contexte et enjeux de l'enseignement

Conditionner et optimiser la conception d'un système pour maximiser le ratio disponibilité opérationnelle et coût global de possession : - Comprendre les enjeux en phase d'exploitation et de maintenance du système - Connaître les postes typiques d'étude pour optimiser les futures opérations de maintenance.

Prise en compte des dimensions socioenvironnementales

ODD9 - Industrie, innovation et infrastructure

Prérequis

Fortes notions en conception système

Modalités d'enseignement et d'évaluation

	Nb d'heures
Cours	14
Cours intégré (cours + TD)	
TD	
TP	
Projets	
Travail en autonomie encadré	
Contrôles et soutenances	
Travail personnel	

Objectifs pédagogiques

(à la fin de cet enseignement, l'étudiant sera capable de ...)

- -Sera capable de proposer des solutions techniques visant à favoriser la disponibilité opérationnelle,
- Saura évaluer le profit global (prise en compte des coûts associés)

Activités

(CM, TD, TP, projet, sortie terrain, etc.)

Les enseignements peuvent être dispensés en anglais.

Évaluations et retours faits aux élèves

(évaluations qui comptent pour la note ou qui permettent à l'étudiant de se situer, corrigés, feedback personnalisé...)

Types d'épreuves et répartition des coef : qcm $\frac{1}{2}$ h (1) – CE 2h (3) – projet (2)

2 Questionnaires individuels ½ h par questionnaire (1)

Retour sur l'évaluation fait à l'élève : mise à disposition des corrections, consultation des copies etc :

Délais de correction des examens : (un maximum de 3 semaines est toléré pour un rendu de correction d'examens)

A l'issue des deux questionnaires, l'élève recevra :

- Ses copies corrigées avec sa note globale
- La correction des deux questionnaires

PRISMgitm_9_1 Ingénierie Système : Modélisation et déploiement	FIG
PRISMgitm_9_1-1 Soutien Logistique Intégré	S9

Plan de cours

Introduction à la notion du Soutien Logistique Intégré

- Définitions,
- Enjeux, contexte et objectifs,
- Norme MIL-STD 1388-2

Intégration des besoins du soutien à la conception

- Intégration des besoins au soutien,
- Utilisation d'outils d'analyses (AMDEC, fiabilité, tâches de maintenance),
- Sélection des meilleurs compromis parmi les solutions de soutien.

Préparation à la mise en exploitation

- Identification des ressources logistiques (personnels, stocks),
- Préparation des ressources logistiques (plans de maintenance, formations, essais, etc.),
- Estimation de la disponibilité opérationnelle et des coûts de soutien.

Exemples et Travaux Pratiques

Ressources et références

1 Poly – références ouvrages, internet... Présentation Powerpoint

PRISMgitm_9_1 Ingénierie Système : Modélisation et déploiement	FIG
PRISMgitm_9_1-2 Déploiement de l'Ingénierie Système en Entreprise	59

Contexte et enjeux de l'enseignement

Transmettre les grands principes de l'ingénierie système et définir les besoins en organisation, outils et méthode pour supporter le déploiement.

Prise en compte des dimensions socioenvironnementales

ODD9 - Industrie, innovation et infrastructure

Prérequis

Modalités d'enseignement et d'évaluation

	Nb d'heures
Cours	16
Cours intégré (cours + TD)	
TD	
TP	
Projets	
Travail en autonomie encadré	
Contrôles et soutenances	
Travail personnel	

Délais de correction des examens :.... (un maximum de 3

semaines est toléré pour un rendu de correction

d'examens)

Objectifs pédagogiques (à la fin de cet enseignement, l'étudiant sera capable de ...) Company to projet, sortie terrain, etc.) Cas d'école en TP hors cours de 6h Synthétiser...) Cas d'école en TP hors cours de 6h Les enseignements peuvent être dispensés en anglais. Mise à disposition des corrections, consultation des copies etc:

PRISMgitm_9_1 Ingénierie Système : Modélisation et déploiement	FIG
PRISMgitm_9_1-2 Déploiement de l'Ingénierie Système en Entreprise	S9

Plan de cours

Décrire les principes systémiques en lien avec la pensée système

Présenter la notion de système pour faire vs système à faire (les fonctions du système pour faire)

Présenter les processus d'ingénierie du besoin sous l'angle organisationnel (gouvernance, projet industriel, organisation projet, fonction)

Ressources et références

1 Poly – références ouvrages, internet...

